Copied to
clipboard

G = S3×C22.F5order 480 = 25·3·5

Direct product of S3 and C22.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C22.F5, C5⋊C83D6, D6.F55C2, D6.9(C2×F5), C54(S3×M4(2)), C154(C2×M4(2)), C15⋊C83C22, C22.8(S3×F5), (C5×S3)⋊2M4(2), (S3×Dic5).5C4, (C22×S3).3F5, C6.23(C22×F5), C158M4(2)⋊3C2, C30.23(C22×C4), Dic5.28(C4×S3), (C2×Dic15).10C4, (C2×Dic5).148D6, Dic15.15(C2×C4), (S3×Dic5).17C22, Dic5.35(C22×S3), (C3×Dic5).33C23, (C6×Dic5).144C22, (S3×C5⋊C8)⋊5C2, C2.24(C2×S3×F5), (C3×C5⋊C8)⋊3C22, (S3×C2×C10).5C4, C10.23(S3×C2×C4), (C2×C6).6(C2×F5), C32(C2×C22.F5), (C2×C30).18(C2×C4), (C2×C10).19(C4×S3), (C2×S3×Dic5).12C2, (S3×C10).14(C2×C4), (C3×C22.F5)⋊2C2, (C3×Dic5).25(C2×C4), SmallGroup(480,1004)

Series: Derived Chief Lower central Upper central

C1C30 — S3×C22.F5
C1C5C15C30C3×Dic5C3×C5⋊C8S3×C5⋊C8 — S3×C22.F5
C15C30 — S3×C22.F5
C1C2C22

Generators and relations for S3×C22.F5
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e5=1, f4=d, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e3 >

Subgroups: 564 in 136 conjugacy classes, 50 normal (36 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, S3, C6, C6, C8, C2×C4, C23, C10, C10, Dic3, C12, D6, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, Dic5, C2×C10, C2×C10, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C5×S3, C30, C30, C2×M4(2), C5⋊C8, C5⋊C8, C2×Dic5, C2×Dic5, C22×C10, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C3×Dic5, Dic15, S3×C10, S3×C10, C2×C30, C2×C5⋊C8, C22.F5, C22.F5, C22×Dic5, S3×M4(2), C3×C5⋊C8, C15⋊C8, S3×Dic5, C6×Dic5, C2×Dic15, S3×C2×C10, C2×C22.F5, S3×C5⋊C8, D6.F5, C3×C22.F5, C158M4(2), C2×S3×Dic5, S3×C22.F5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, F5, C4×S3, C22×S3, C2×M4(2), C2×F5, S3×C2×C4, C22.F5, C22×F5, S3×M4(2), S3×F5, C2×C22.F5, C2×S3×F5, S3×C22.F5

Smallest permutation representation of S3×C22.F5
On 120 points
Generators in S120
(1 11 50)(2 12 51)(3 13 52)(4 14 53)(5 15 54)(6 16 55)(7 9 56)(8 10 49)(17 33 25)(18 34 26)(19 35 27)(20 36 28)(21 37 29)(22 38 30)(23 39 31)(24 40 32)(41 113 71)(42 114 72)(43 115 65)(44 116 66)(45 117 67)(46 118 68)(47 119 69)(48 120 70)(57 102 78)(58 103 79)(59 104 80)(60 97 73)(61 98 74)(62 99 75)(63 100 76)(64 101 77)(81 110 93)(82 111 94)(83 112 95)(84 105 96)(85 106 89)(86 107 90)(87 108 91)(88 109 92)
(9 56)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(25 33)(26 34)(27 35)(28 36)(29 37)(30 38)(31 39)(32 40)(41 71)(42 72)(43 65)(44 66)(45 67)(46 68)(47 69)(48 70)(57 78)(58 79)(59 80)(60 73)(61 74)(62 75)(63 76)(64 77)(81 110)(82 111)(83 112)(84 105)(85 106)(86 107)(87 108)(88 109)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(42 46)(44 48)(49 53)(51 55)(57 61)(59 63)(66 70)(68 72)(74 78)(76 80)(81 85)(83 87)(89 93)(91 95)(98 102)(100 104)(106 110)(108 112)(114 118)(116 120)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)
(1 96 113 20 99)(2 21 89 100 114)(3 101 22 115 90)(4 116 102 91 23)(5 92 117 24 103)(6 17 93 104 118)(7 97 18 119 94)(8 120 98 95 19)(9 73 34 69 82)(10 70 74 83 35)(11 84 71 36 75)(12 37 85 76 72)(13 77 38 65 86)(14 66 78 87 39)(15 88 67 40 79)(16 33 81 80 68)(25 110 59 46 55)(26 47 111 56 60)(27 49 48 61 112)(28 62 50 105 41)(29 106 63 42 51)(30 43 107 52 64)(31 53 44 57 108)(32 58 54 109 45)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,11,50)(2,12,51)(3,13,52)(4,14,53)(5,15,54)(6,16,55)(7,9,56)(8,10,49)(17,33,25)(18,34,26)(19,35,27)(20,36,28)(21,37,29)(22,38,30)(23,39,31)(24,40,32)(41,113,71)(42,114,72)(43,115,65)(44,116,66)(45,117,67)(46,118,68)(47,119,69)(48,120,70)(57,102,78)(58,103,79)(59,104,80)(60,97,73)(61,98,74)(62,99,75)(63,100,76)(64,101,77)(81,110,93)(82,111,94)(83,112,95)(84,105,96)(85,106,89)(86,107,90)(87,108,91)(88,109,92), (9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40)(41,71)(42,72)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(57,78)(58,79)(59,80)(60,73)(61,74)(62,75)(63,76)(64,77)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(42,46)(44,48)(49,53)(51,55)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(98,102)(100,104)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,96,113,20,99)(2,21,89,100,114)(3,101,22,115,90)(4,116,102,91,23)(5,92,117,24,103)(6,17,93,104,118)(7,97,18,119,94)(8,120,98,95,19)(9,73,34,69,82)(10,70,74,83,35)(11,84,71,36,75)(12,37,85,76,72)(13,77,38,65,86)(14,66,78,87,39)(15,88,67,40,79)(16,33,81,80,68)(25,110,59,46,55)(26,47,111,56,60)(27,49,48,61,112)(28,62,50,105,41)(29,106,63,42,51)(30,43,107,52,64)(31,53,44,57,108)(32,58,54,109,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,11,50)(2,12,51)(3,13,52)(4,14,53)(5,15,54)(6,16,55)(7,9,56)(8,10,49)(17,33,25)(18,34,26)(19,35,27)(20,36,28)(21,37,29)(22,38,30)(23,39,31)(24,40,32)(41,113,71)(42,114,72)(43,115,65)(44,116,66)(45,117,67)(46,118,68)(47,119,69)(48,120,70)(57,102,78)(58,103,79)(59,104,80)(60,97,73)(61,98,74)(62,99,75)(63,100,76)(64,101,77)(81,110,93)(82,111,94)(83,112,95)(84,105,96)(85,106,89)(86,107,90)(87,108,91)(88,109,92), (9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40)(41,71)(42,72)(43,65)(44,66)(45,67)(46,68)(47,69)(48,70)(57,78)(58,79)(59,80)(60,73)(61,74)(62,75)(63,76)(64,77)(81,110)(82,111)(83,112)(84,105)(85,106)(86,107)(87,108)(88,109), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(42,46)(44,48)(49,53)(51,55)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(98,102)(100,104)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,96,113,20,99)(2,21,89,100,114)(3,101,22,115,90)(4,116,102,91,23)(5,92,117,24,103)(6,17,93,104,118)(7,97,18,119,94)(8,120,98,95,19)(9,73,34,69,82)(10,70,74,83,35)(11,84,71,36,75)(12,37,85,76,72)(13,77,38,65,86)(14,66,78,87,39)(15,88,67,40,79)(16,33,81,80,68)(25,110,59,46,55)(26,47,111,56,60)(27,49,48,61,112)(28,62,50,105,41)(29,106,63,42,51)(30,43,107,52,64)(31,53,44,57,108)(32,58,54,109,45), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,11,50),(2,12,51),(3,13,52),(4,14,53),(5,15,54),(6,16,55),(7,9,56),(8,10,49),(17,33,25),(18,34,26),(19,35,27),(20,36,28),(21,37,29),(22,38,30),(23,39,31),(24,40,32),(41,113,71),(42,114,72),(43,115,65),(44,116,66),(45,117,67),(46,118,68),(47,119,69),(48,120,70),(57,102,78),(58,103,79),(59,104,80),(60,97,73),(61,98,74),(62,99,75),(63,100,76),(64,101,77),(81,110,93),(82,111,94),(83,112,95),(84,105,96),(85,106,89),(86,107,90),(87,108,91),(88,109,92)], [(9,56),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(25,33),(26,34),(27,35),(28,36),(29,37),(30,38),(31,39),(32,40),(41,71),(42,72),(43,65),(44,66),(45,67),(46,68),(47,69),(48,70),(57,78),(58,79),(59,80),(60,73),(61,74),(62,75),(63,76),(64,77),(81,110),(82,111),(83,112),(84,105),(85,106),(86,107),(87,108),(88,109)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(42,46),(44,48),(49,53),(51,55),(57,61),(59,63),(66,70),(68,72),(74,78),(76,80),(81,85),(83,87),(89,93),(91,95),(98,102),(100,104),(106,110),(108,112),(114,118),(116,120)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120)], [(1,96,113,20,99),(2,21,89,100,114),(3,101,22,115,90),(4,116,102,91,23),(5,92,117,24,103),(6,17,93,104,118),(7,97,18,119,94),(8,120,98,95,19),(9,73,34,69,82),(10,70,74,83,35),(11,84,71,36,75),(12,37,85,76,72),(13,77,38,65,86),(14,66,78,87,39),(15,88,67,40,79),(16,33,81,80,68),(25,110,59,46,55),(26,47,111,56,60),(27,49,48,61,112),(28,62,50,105,41),(29,106,63,42,51),(30,43,107,52,64),(31,53,44,57,108),(32,58,54,109,45)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F 5 6A6B8A8B8C8D8E8F8G8H10A10B10C10D10E10F10G12A12B12C 15 24A24B24C24D30A30B30C
order122222344444456688888888101010101010101212121524242424303030
size11233625510151530424101010103030303044412121212101020820202020888

42 irreducible representations

dim11111111122222244444888
type++++++++++++-++-
imageC1C2C2C2C2C2C4C4C4S3D6D6M4(2)C4×S3C4×S3F5C2×F5C2×F5C22.F5S3×M4(2)S3×F5C2×S3×F5S3×C22.F5
kernelS3×C22.F5S3×C5⋊C8D6.F5C3×C22.F5C158M4(2)C2×S3×Dic5S3×Dic5C2×Dic15S3×C2×C10C22.F5C5⋊C8C2×Dic5C5×S3Dic5C2×C10C22×S3D6C2×C6S3C5C22C2C1
# reps12211142212142212142112

Matrix representation of S3×C22.F5 in GL8(𝔽241)

2402406500000
1001760000
0002400000
0012400000
00001000
00000100
00000010
00000001
,
0101760000
1001760000
0012400000
0002400000
00001000
00000100
00000010
00000001
,
1037370000
0137370000
0024000000
0002400000
00001000
00000100
00000010
00000001
,
2400000000
0240000000
0024000000
0002400000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
0000189100
0000240000
0000002401
00003018852
,
0631611620000
0631611610000
641281781780000
17764000000
000069217142200
000012672191229
0000508643126
000082578857

G:=sub<GL(8,GF(241))| [240,1,0,0,0,0,0,0,240,0,0,0,0,0,0,0,65,0,0,1,0,0,0,0,0,176,240,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,176,176,240,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,37,37,240,0,0,0,0,0,37,37,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,189,240,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,188,0,0,0,0,0,0,1,52],[0,0,64,177,0,0,0,0,63,63,128,64,0,0,0,0,161,161,178,0,0,0,0,0,162,161,178,0,0,0,0,0,0,0,0,0,69,126,50,82,0,0,0,0,217,72,86,57,0,0,0,0,142,191,43,88,0,0,0,0,200,229,126,57] >;

S3×C22.F5 in GAP, Magma, Sage, TeX

S_3\times C_2^2.F_5
% in TeX

G:=Group("S3xC2^2.F5");
// GroupNames label

G:=SmallGroup(480,1004);
// by ID

G=gap.SmallGroup(480,1004);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,422,80,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^5=1,f^4=d,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽